Optimal Design of Reverse Osmosis Based Desalination Process with Seasonal Variation of Feed Temperature

نویسنده

  • Kamal Sassi
چکیده

The design of reverse osmosis (RO) networks is investigated here using a mixed-integer non-linear programming (MINLP) approach based on a superstructure. A flexible superstructure that contains all possible alternatives of a potential RO network was developed and was used in the synthesis of RO networks. The networks were designed by using DuPont’s B10 Hollow Fiber module. For fixed freshwater demand and quality, the total annualized cost of the RO networks (capital and operating costs) is minimized in order to find the optimal operation and configuration of RO systems for three different feed concentrations and with seasonal variation of seawater temperature. It is found that seasonal variation in seawater temperature has a significant effect on the design and operation of RO systems. Also the results demonstrate that the variation in the number of modules required for the operation of RO process in high and low temperature seasons offers the possibility of flexible scheduling of cleaning and maintenance of membrane modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigation of Energy Consumption and Performance of Reverse Osmosis Desalination using Design of Experiments Method

To control the quality of reverse osmosis (RO) product water and reduce operational costs and environmental impacts by increasing the system’s energy efficiency, it is necessary to identify the influence of process parameters on energy consumption and permeate water quality. This paper introduces a case study focused on the application of Design of Experiments (DOE) method in an industrial-scal...

متن کامل

A Novel Photovoltaic Powered Reverse Osmosis with Improved Productivity of Reverse Osmosis and Photovoltaic Panel

With the increasing installed capacity of desalination, the greenhouse gas emission for generating the required energy to power the desalination plants is also becoming the focus of attention in the world community. Domestic reverse osmosis membranes have been very successful technology especially in the developing world to provide safe drinking water. The novel concept of photovoltaic powered ...

متن کامل

Various Approaches to Thermodynamic Optimization of a Hybrid Multi-effect Evaporation with Thermal Vapour Compression and Reverse Osmosis Desalination System Integrated to a Gas Turbine Power Plant

This paper investigates the simulation of a hybrid desalination system composed of multi-effect evaporation with thermal vapour compression desalination (METVC) and reverse osmosis (RO) plant. The hybrid desalination system is also integrated with a gas turbine power plant through a heat recovery steam generator (HRSG). First, a comprehensive Thermodynamic model for HRSG, METVC, and RO are deve...

متن کامل

Bentazon removal from aqueous solution by reverse osmosis; optimization of effective parameters using response surface methodology

Although bentazon is widely used as an agricultural herbicide, it is harmful to humans and poses many environmental threats. This study focused on the treatment of wastewater contaminated with bentazon pesticides using membrane technology. In this regard, low-pressure reverse osmosis (RO) was employed as it has already been used in the removal of other micro-pollutants. The effects of process v...

متن کامل

Energy Consumption Optimization of Reverse Osmosis Membrane Water Desalination Subject to Feed Salinity Fluctuation

We study the energy consumption optimization of a reverse osmosis water desalination process producing a constant permeate flow in the presence of feed concentration fluctuation. We propose a time-varying optimal operation strategy that can significantly reduce the specific energy consumption compared to time-invariant process operation. We present both computational and experimental results th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011